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Abstract
The factorization problem for the group of canonical transformations close to
the identity and the corresponding twistor equations for an ample family of
canonical variables are considered. A method to deal with these reductions
is developed for the construction of classes of nontrivial solutions of the dKP
equation.

PACS numbers: 02.40.Ky, 02.30.Ik
Mathematics Subject Classification: 58B20.

1. Introduction

This paper deals with the integration problem of the dispersionless Kadomtsev–Petviashvili
(dKP) equation, the first member of the integrable hierarchy obtained from the ordinary
KP hierarchy through the dispersionless limit. This limit coincides with the quasiclassical
approximation for the underlying quantum space of differential operators of the KP equation
which, for the dKP case, becomes the classical phase space endowed with a Poisson
structure.

The theory and applications of the nonlinear models arising in the dispersionless (or
quasiclassical) limits of the integrable systems of KdV type have been active subjects of
research for more than twenty years (see, for example, [1–14]). However, the theory of their
solution methods seems far from being completed. Indeed, only for a few cases [15–17] is the
dispersionless limit of the inverse scattering method available and dispersionless versions of
ordinary direct methods such as the ∂ method are not yet fully developed [18].

In [3, 4] Kodama and Gibbons provided a direct method for finding solutions of the
dispersionless KP (dKP) equation and its associated dKP hierarchy of nonlinear systems. The
main ingredient of their method is the use of reductions of the dKP hierarchy formulated
in terms of hydrodynamic-type equations. An alternative direct method for solving the
dKP hierarchy from its reductions was recently proposed in [19] . It is based on the
characterization of reductions (and hodograph solutions) of the dKP hierarchy by means
of certain systems of first-order partial differential equations. In [5] Takasaky and Takebe
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showed that the factorization problem for the group of canonical transformations in two-
dimensional phase space provides a direct solution method for the dKP equation. Furthermore,
that method has a twistor interpretation. The group of canonical transformations acts on
the phase space, viewed as a part of the Lie algebra of that group, through the adjoint
representation. Hence, the factorization problem in the group is represented in the phase
space too. That representation is called the twistor formulation of the factorization problem
and admits several geometric interpretations. This twistor formulation allows for the use
of the canonical formalism of classical mechanics in the resolution of the factorization
problem for solving the dKP equation. The canonical formalism enters in the form of
generating functions for canonical transformations. When expressed in terms of appropriate
variables, these generating functions provide us with a trivialization of the group structure
in the sense that transforms right derivatives in the group of canonical transformations
into ordinary derivatives. This seems to be a relevant fact in the whole integration
scheme.

The Hamilton–Jacobi method of integration of the canonical equations appears in the
present context of multi-time Hamiltonian formalism as a trivialization, again, of the group
structure. The zero-curvature condition, which holds for the right differential of a function
in the group, proves to be equivalent to the requirement that the Poincaré–Cartan action 1-
form associated with that right differential is a closed differential form. The dependence
of the momentum on coordinates and time, the main feature of the Hamilton–Jacobi theory,
compensates the non-commutative Poisson structure of the phase space and transforms the
zero-curvature condition into an equivalent closed differential 1-form which is the differential
of the mechanical action of the system.

In this paper a method for solving the dKP equation based on the resolution of the twistor
equations is given. It is concerned with a class of canonical transformations which can be
considered as defining the initial conditions for the factorization problem. One of the main
ingredients in our construction lies in the observation that, regarding the twistor equations,
negative powers in the momentum variable can be substituted by negative powers in the Lax
function. This equivalence furnishes a method that allows for the reduction of the twistor
equations, in the class of the chosen canonical variables, to a system of first-order ordinary
differential equations for a finite number of coefficients of a generating function; however, it
reduces to an algebraic system in the simplest cases.

Our main result consists in the characterization and construction of a class of canonical
transformations, the initial conditions for the factorization problem or twistor data in the
terminology of [5], for which the twistor equations can be solved explicitly. Through such
resolution we obtain the corresponding solutions of the dKP equation which are described
by means of the generating function of the canonical transformation under consideration.
The generating functions are characterized as series of fractionary powers in the momentum
variable.

The organization and content of the paper are as follows. In section 2 we revisit
the twistor equations from the factorization problem point of view. We first present the
factorization problem in the group of canonical transformations close to the identity in a
two-dimensional phase space. Then, the twistor equations are derived. We continue by
emphasizing the role of generating functions in the factorization problem and the relevance
of the expansions in negative powers of the Lax function. At the end of the section some
of the symmetries of the dKP are rederived. In section 3 we consider the general case
characterized by canonical variables X and P of finite order at p = ∞. In particular, generating
functions for these reductions are found and explicit solutions of the dKP equation are
constructed.
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2. The twistor equations

2.1. The factorization problem

Let g be the Lie algebra of functions F(p, x) on the two complex variables p and x given as
the sum of two subalgebras g = g+ ⊕ g− which are the spaces of analytic functions on the
variable p at p = 0 and p = ∞, respectively, with a common domain of definition. The
functions in g− vanish at p = ∞ and the commutator in g is defined by the Poisson bracket

{F1, F2} = ∂F1

∂p

∂F2

∂x
− ∂F1

∂x

∂F2

∂p
.

Let L be an element in g that depends on new variables t2, t3, . . . and has the prescribed
form

L(p, x, t2, t3, . . .) = p +
∑
j�1

uj (x, t2, t3, . . .)p
−j .

As usual, define the functions Pn, n = 2, 3, . . . , as the projections on g+ of the positive
powers of L,Pn = Ln|+ in terms of which the Lax–Sato hierarchy is given by the infinite set
of equations

∂L

∂tn
= {Pn,L}

for n = 2, 3, . . . , which in particular imply the dKP equation for the function u = 2u1(
ut − 3

2uux

)
x

= 3
4uyy

where u1 is the coefficient of p−1 in L and we have set t2 = y, t3 = t .
The Lax–Sato equations provide, in their first and more usual interpretation, the

compatibility conditions for the vanishing of the curvature of the connection

ω+ :=
∑
n�2

Pn dtn.

For that differential 1-form one finds

dω+ = 1

2
{ω+, ω+} =

∑
m<n

{Pm,Pn} dtm ∧ dtn

where the dKP equation is represented by ∂3P2 − ∂2P3 + {P2, P3} = 0. We can also think of
the previous system as a collection of Hamiltonian flows in the phase space with canonical
coordinates (p, x). There is an infinite set of commuting flows defined by the Hamiltonians
Hn = −Pn, n = 2, 3, . . .

∂x

∂tn
= ∂Hn

∂p

∂p

∂tn
= −∂Hn

∂x

whose compatibility conditions are precisely the equations of the dKP hierarchy for the
potentials in the function L.

The structure underlying the Lax–Sato system can be conveniently understood by means
of the group of canonical transformations connected with the identity. A transformation
(p, x) → (P,X) is canonical (dP ∧ dX = dp ∧ dx) and connected with the identity if it is
of the form

P = exp(ad K) · p = p − Kx − 1
2 {K,Kx} − · · ·

X = exp(ad K) · x = x + Kp + 1
2 {K,Kp} + · · ·
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space and

Kx := ∂K

∂x
Kp := ∂K

∂p
.

These formulae also admit an interpretation in terms of the right derivatives of a group
element in the local Lie group G defined by the Lie algebra g. Let G = exp g be the Lie group
of canonical transformations connected with the identity. Then, for the action of an element
k = exp K on the canonical coordinates (p, x) we obtain the expressions

P = Ad k · p = exp(ad K) · p = p − kx · k−1

X = Ad k · x = exp(ad K) · x = x + kp · k−1

where for a given element k of the group of canonical transformations we defined the right
derivatives we have used the right differential

kx · k−1 :=
∑
n�0

1

(n + 1)!
(ad K)nKx kp · k−1 :=

∑
n�0

1

(n + 1)!
(ad K)nKp (2.1)

where

ad K(f ) := {K,f }.
The relevance of this group in the theory of the dKP equation appears in connection with

the formulation of the Lax–Sato system as a factorization problem. Let G± = exp g± be the
local Lie groups with Lie algebras g±, respectively, viewed as subgroups of the group G. Let
t (p) be an element in g+ of the form

t (p) := t2p
2 + t3p

3 + · · ·
and define the canonical transformation ψ = (exp t (p))k. The factorization problem in
the group G with respect to the subgroups G± is then the equation ψ = ψ−1

− ψ+ for the
representation of a given element ψ as the product of a pair of group elements ψ± in
the subgroups G± respectively. In particular, for the element ψ defined above we have
the equation

et (p)k = ψ−1
− ψ+ (2.2)

the solutions of which depend both on the time variables {t2, t3, . . .} and on the initial condition
given by the constant element k. More precisely, the element k enters the solutions ψ± as the
representative of a point in the double coset space �−\G/G+ where �− is the centralizer of
exp t (p) in G−.

In order to construct the Lax–Sato equations through the factorization problem we take
the right differential with respect to the time variables in (2.2) from which we get

dψ− · ψ−1
− + Ad ψ− · dt (p) = dψ+ψ

−1
+ . (2.3)

If we identify the function L in g with a point in the orbit of p for the action of G−, L =
Ad ψ− · p, the projection on g+ of

Ad ψ− · dt (p) =
∑
n�2

Ad ψ−pn dtn =
∑
n�2

Ln dtn (2.4)

implies that the differential form ω+ = dψ+ψ
−1
+ = ∑

n�2 Ln|+dtn is of zero curvature and
hence the dKP equation is obtained from the factorization problem. The meaning of these
equations is that positive and negative projections of the form

ω :=
∑
n�2

Ln dtn

in (2.4), ω = ω+ − ω−, are of zero curvature, ω± = dψ±ψ−1
± , as follows from (2.3).
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2.2. Twistor equations

The canonical formalism allows for a reformulation of the factorization problem (2.2) in the
twistor language [5]. Let (P,X) be new canonical variables defined by the element k in (2.2),
P = Ad k · p,X = Ad k · x, and define in addition the canonical pair (L,M) through the
action of the canonical transformation ψ− exp t (p),

L = Ad(ψ−et (p)) · p M = Ad(ψ−et (p)) · x. (2.5)

For these variables, which are constants of motion for the Hamiltonian flows with Hamiltonians
Hn = −Pn = Ln|+, n = 2, 3, . . .:

∂L

∂tn
+ {Hn,L} = 0

∂M

∂tn
+ {Hn,M} = 0

one finds the expressions

L = p − ∂ψ−
∂x

· ψ−1
− M = ∂t (L)

∂L
+ x +

∂ψ−
∂p

· ψ−1
− (2.6)

where we are using the right differentials of the canonical transformation ψ− as defined in
(2.1). As a consequence of formula (2.2) we obtain the relation

ψ−et (p)k = ψ+

whose action on the pair of canonical variables (p, x) results in an equivalent description of
the factorization problem, namely

P(L,M) = Ad ψ+ · p X(L,M) = Ad ψ+ · x

which finally lead to the equations for the function L

P(L,M)|− = 0 X(L,M)|− = 0 (2.7)

which represent the twistor form of the factorization problem (2.2).

2.3. Generating functions

The most effective method to deal with canonical transformations is furnished by the
formulation in terms of their generating functions. If we want to describe the canonical
variables (L,M) of (2.6) it proves to be convenient to define a generating function for this
transformation �(L, x) such that its differential is given by d�(L, x) = M dL + p dx. For
such a transformation one finds the expression

�(L, x) = xL + t (L) + φ(L, x) (2.8)

where t (L) := t2L
2 + t3L

3 + · · · and φ(L, x) is a negative power series in L,φ(L, x) =∑
n�1 φn(x)L−n. With this definition we deduce the relations

p = ∂�

∂x
= L +

∂φ

∂x
(2.9)

and

M = ∂�

∂L
= x +

∂t

∂L
+

∂φ

∂L
. (2.10)

These formulae are to be compared with the corresponding expressions for L and M as given
by (2.6), which imply the relations

∂φ

∂x
(L, x) = ∂ψ−

∂x
ψ−1

− (p, x)
∂φ

∂L
(L, x) = ∂ψ−

∂p
ψ−1

− (p, x) (2.11)

provided p and L satisfy p = L + φx as in (2.9).
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From these equations we learn that functions φ and ψ− are equivalent negative power
series to describe the solutions of the factorization problem. The main advantage of φ as
compared with ψ− is that it allows for the use of ordinary partial derivatives instead of
the right-invariant derivatives necessary when dealing with ψ−. Such a simplification is
achieved by choosing the mixed independent variables (L, x) for the generating function
� of the canonical transformation. Greater simplification also is gained in describing the
coefficients of φ(L, x), for if we represent ψ− = exp � in terms of a negative power series
� = ∑

j�1 �jp
−j , the right differential ω− = dψ−ψ−1

− is then

ω− = d� + 1
2 {�, d�} + · · · .

Integrating this equation along a conveniently chosen closed path gives

d�1 = 1

2π i

∫
ω−(p) dp

from which we deduce, taking into account (2.3) and the definition of ω, the relation

d�1 = − 1

2π i

∫
ω(p) dp = 1

2π i

∫
ω(L)

∑
k�1

kL−k−1φkx dL

after changing the integration variable according to formula (2.9). Upon substitution of
ω(L) = ∑

j�2 Lj dtj we finally get the relations

∂�1

∂tk
= kφkx

for k = 2, 3, . . . besides �1 = φ1, which follows from (2.11).

2.4. L−1 expansions for the twistor equations

The twistor form for the factorization problem as given by equations (2.7) implies for the
unknown function φ(L, x) the equations

P

(
L, x +

∂t

∂L
+

∂φ

∂L

) ∣∣∣
−

= 0 (2.12)

and

X

(
L, x +

∂t

∂L
+

∂φ

∂L

) ∣∣∣
−

= 0. (2.13)

In order to obtain a solution φ(L, x) for a fixed pair of canonical variables (P,X) we should
begin by computing the negative parts, as power series in the variable p, of both the equations
(2.12) and (2.13). In this context the following observation seems to be crucial in the whole
procedure of resolution developed in the following. Due to the connection (2.9) between the
variables p and L a negative power series in p can be written as a negative power series in
L, since p−1 = L−1(1 + L−1φx)

−1, and reciprocally. The vanishing of the negative parts of
P and X as power series in p is therefore equivalent to the vanishing of the negative parts
of P and X as power series in L. To take advantage of the simplification gained in solving
equations (2.12) and (2.13) viewed as power series in L, mainly because they are naturally
expressed in the variable L rather than in p, we should be able to compute the negative part
of any power of L.

We shall presently proceed to compute the negative part of a power series in the variable
L, i.e., its projection onto the subalgebra g− expressed in the variable L. In that case we



On twistor solutions of the dKP equation 6463

obtain for the projection of a negative power of L the same negative power L−k|− = L−k for
k = 1, 2, . . . while for a positive power of L we find the recurrent formula

Lk|− = [Lk − (L + φx)
k]− (2.14)

for k = 0, 1, 2, . . . . This relation follows from the identity Lk|− = [Lk−pk]− after substitution
of p = L + φx according to (2.9). To see why this is a recurrent formula we develop the r.h.s.
member according to the binomial formula from which we get the desired relation

Lk|− = −kLk−1φx |− −
(

k

2

)
Lk−2φ2

x

∣∣
− − · · · − φk

x.

2.5. Generating functions and symmetries

As we said before, solutions of the factorization problem furnish solutions of the dKP equation.
The factorization problem is solved once we know the function ψ− or equivalently, as we have
just seen, the function φ from which we obtain the dKP solution u as

u(x, t2, t3, . . .) = −2φ1x(x, t2, t3, . . .). (2.15)

This formula follows from the relation L2|+ = p2 − 2φ1x = p2 + u which is a direct
consequence of (2.9) and the definition of L.

The freedom allowed by the dKP equation for the definition of the solution and coordinates
can be conveniently described in terms of the action of the associated mechanical system.
In Hamilton–Jacobi theory, the zero-curvature equation in phase space for the 1-form
ω+ = ∑

n�2 Pn dtn, defined by the Hamiltonians Hn = −Pn, transforms in the condition
that the Poincaré–Cartan 1-form p dx +ω+ be a closed form in configuration space. The action
S(x, t) is thereby locally defined according to the relation

dS = p dx + ω+

and the Poisson structure disappears. In particular, the dKP equation follows from

dS = p dx + (p2 + u) dy +
(
p3 + 3

2up + v
)

dt . (2.16)

Incidentally, the function S(x, y, t) satisfies a modified dKP equation(
St + 1

2S3
x

)
x

= 3
2SySxx + 3

4Syy

which transforms into the dKP equation through the Miura map,

u = Sy − S2
x

as a consequence of (2.16). Going back to the definition of coordinates, it is readily observed
that (2.16) is kept as a closed form under the transformations:

x = x̃ + α(t) y = ỹ t = t̃ (2.17)

ũ(x̃, ỹ, t̃ ) = u(x, y, t) + 2
3 α̇ (2.18)

x = x̃ + 2
3 β̇ỹ y = ỹ + β t = t̃ p = p̃ + 1

3 β̇ (2.19)

ũ(x̃, ỹ, t̃ ) = u(x, y, t) − 2
9 β̇2 + 4

9 β̈ỹ (2.20)

and

x = γ̇ 1/3x̃ + 2
9 γ̇ −2/3γ̈ ỹ2 y = γ̇ 2/3ỹ t = γ (t̃) p = γ̇ −1/3

(
p̃ − 2

9 γ̇ −1γ̈ ỹ
)
(2.21)

ũ(x̃, ỹ, t̃ ) = γ̇ 2/3u(x, y, t) + 2
9 γ̇ −1γ̈ x̃ + 4

27

(
γ̇ −1γ (3) − 4

3 γ̇ −2γ̈ 2) ỹ2. (2.22)

This was stated in [14] where these symmetries were obtained for the spacetime metric used
to derive the dKP equation.
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3. Reductions and the resolution of the twistor equations

3.1. Reductions

To continue the analysis of the twistor system (2.12), (2.13) we should make an explicit choice
of the canonical variables P,X, which can be understood as reductions of the general situation.
In what follows we shall consider canonical variables P,X of the form

P(p, x) =
∑
k�0

am−k(ρ)pm−k (3.1)

and

X(p, x) =
∑
k�0

bn−k(ρ)pn−k (3.2)

where the power series depend on x through the new variable

ρ := x

h′(p)
h(p) := pr+1 eR−(p) (3.3)

defined in terms of the arbitrary negative power series in p

R−(p) :=
∑
j�1

cjp
−j .

Some comments are in order about the definitions made above. The structure of the
transformation is fixed by a triple of positive integers {m,n, r}. The first two of them, m,n,
determine the positive degree in p of the new variables P = ampm + · · · and X = bnp

n + · · ·,
where the dots denote the terms that contain lower powers in p. The third integer r determines
both the definition of the variable ρ as well as the degree of the function t (p) that we now
take as a polynomial of degree r + 1 in p,

t (p) = tr+1p
r+1 + trp

r + · · · + t2p
2. (3.4)

Regularity conditions on the coefficients aj , bj will be assumed in each concrete case.
At this point we shall postpone the explicit construction of the canonical transformation
(p, x) → (P,X) to the next section and concentrate on the method for solving the twistor
equations for the cases under consideration.

The first step in that direction consists in the substitution of (p, x) in (3.1) and (3.2) by
(L,M) to get new series in L that we now denote by

F(L, x) := P(L,M) =
∑
k�0

am−k(ρ)Lm−k (3.5)

and

G(L, x) := X(L,M) =
∑
k�0

bn−k(ρ)Ln−k (3.6)

where the variable ρ is, of course, ρ = M/h′(L) for which, taking into account expression
(2.10) for M , we find the formula

ρ = 1

h′(L)

(
∂t

∂L
+ x + φL

)

so that ρ is analytic in L at L = ∞. We assume generically that the coefficients aj (ρ) and
bj (ρ) are analytic functions of L at L = ∞. With this hypothesis both F and G will continue
having expressions as power series in L with degrees m and n, respectively. The assumptions
made in defining the canonical variables (P,X) are enough to guarantee that the number of
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positive powers of L appearing in F(L, x) and G(L, x) is in both cases finite. This is an
important requisite to carry out the present construction.

The structure of the system of equations (2.12) and (2.13) in the present situation follows
from the analysis of the series coefficients as we shall next show. Since the existence of power
series expansions for the coefficients ak(ρ), bk(ρ) is assumed, we have the series

ak(ρ) =
∑
j�0

akj(x, t)L−j bk(ρ) =
∑
j�0

bkj(x, t)L−j

where t = (t2, t3, . . . , tr+1) represents the time variables. It is easy to see that the coefficients
in these series are functions of the form

akj(x, t) = akj [x, t, φ1, . . . , φj−r−1] bkj(x, t) = bkj [x, t, φ1, . . . , φj−r−1]

from which we deduce for F(L, x) and G(L, x) in (3.5), (3.6) expansions of the form

F(L, x) = am,0L
m + (am,1 + am−1,0)L

m−1 + (am,2 + am−1,1 + am−2,0)L
m−2 + · · ·

and

G(L, x) = bn,0L
n + (bn,1 + bn−1,0)L

n−1 + (bn,2 + bn−1,1 + bn−2,0)L
n−2 + · · ·

which imply the expressions

F(L, x) =
∑
k�0

fkL
m−k G(L, x) =

∑
k�0

gkL
n−k. (3.7)

We have thus obtained the formulae

fk(x, t) = fk[x, t, φ1, . . . , φk−r−1] gk(x, t) = gk[x, t, φ1, . . . , φk−r−1]

displaying the number of functions φ contained in each coefficient. As in (2.14) we continue
with the notation F |− and G|− for the projections on g−, the negative part, of the series F and
G of (3.7).

Definition 3.1. For the negative parts of the series (3.7) we define the coefficients Fk and Gk

by the series

F |− =
∑
k�1

FkL
−k G|− =

∑
k�1

GkL
−k. (3.8)

For instance, for F1 we find

F1 = f0L
m|−1 + f1L

m−1|−1 + · · · + fm−1L|−1 + fm+1 (3.9)

where Lk|−1 is the coefficient of L−1 in Lk|− as given by (2.14). We are now in a position to
formulate the main result of the present paper.

Theorem 3.1. Assume the factorization problem (2.2) has a solution described by the twistor
equations corresponding to (3.7)

F(L, x)|− = 0 G(L, x)|− = 0 (3.10)

for the canonical transformation defined by (3.1), (3.2). Then, the solution u(x, t) = −2φ1x ,
as given by (2.15), for the dKP hierarchy can be found by solving for φ1 the nonlinear system
of m + n − 2 ordinary differential equations for the m + n − 2 unknowns φ1, φ2, . . . , φm+n−2,

F1 = F2 = · · · = Fn−1 = 0 (3.11)

G1 = G2 = · · · = Gm−1 = 0 (3.12)

determined by the coefficients in (3.8).
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Proof. Since the factorization problem is solvable there is a negative power series in
L,φ(L, x), defining the canonical transformation (2.8), and being a solution of (3.10). As
follows from the expression for Lm|−1 in (2.14), this is a polynomial on the first m coefficients
of φ(L, x), φ1x, φ2x, . . . , φmx , hence the coefficient F1 of F in L−1 (3.9) determines an
equation of the form

F1(x, t, φ1, . . . , φm−r , φ1x, . . . , φmx) = 0

where we have taken into account the structure of the coefficients fj previously considered.
By arguments of the same type one finds that Fk is of the form

Fk(x, t, φ1, . . . , φm+k−r−1, φ1x, . . . , φm+k−1,x ) = 0

while for G we can write

Gk(x, t, φ1, . . . , φn+k−r−1, φ1x, . . . , φn+k−1,x) = 0.

Therefore, the first n − 1 equations for F , (3.11), and the first m − 1 equations for G, (3.12),
define a nonlinear system of first-order ordinary differential equations containing as many
equations as unknowns and hence our assertion follows. �

In practice, for the examples that one can reasonably compute, things become even
simpler. The sought function φ1x can be found algebraically from system (3.11), (3.12). This
is obviously always the case for r � m + n − 2 but it need not to be so if r < m + n − 2.
An alternative interpretation of the theorem is as a factorization criterion for the problem
(2.2). For a given canonical transformation (p, x) → (P,X) one does not know in general
whether there is a solution for the system (3.10). But if a solution φ1x determined by (3.11),
(3.12) gives a solution u = −2φ1x of the dKP hierarchy, which one can check at least for
the dKP equation, then the whole φ(L, x) can be recovered. The question of whether or not
the canonical transformation is factorizable, in order that the system (3.11), (3.12) admits a
solution, does not seem a serious obstruction. For if we take transformations depending on
arbitrary functions and parameters generically enough, there will be special values for the
arbitrary data for which the solution ceases to exist. In that case the solution u of the dKP
equation becomes singular for these special values of the free data.

3.2. The canonical transformation and the reduction

From what we have seen, one of the main ingredients in the whole procedure allowing
for the construction of solutions in the twistor context is the canonical transformation
(p, x) → (P,X) in section 2. Thus we need a description of the chosen canonical variables
(3.1), (3.2) which are determined by the differential equation dP ∧ dX = dp ∧ dx, which in
terms of the variables (p, ρ), where ρ is defined by (3.3), becomes

dP ∧ dX = h′(p) dp ∧ dρ.

Direct substitution of the series (3.1), (3.2) for P and X in this equation leads to a recurrent
system of ordinary differential equations for the coefficients bk(ρ) in terms of the arbitrarily
given coefficients ak(ρ) and vice versa.

The most effective method of integration for these equations is furnished by a generating
function for the canonical transformation, namely the function J (P, ρ) the differential of
which is given by

X dP + h(p) dρ = dJ (P, ρ).
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The differential of this relation is the primitive equation for P and X, which will be identically
fulfilled provided we have a solution for the implicit equations

h(p) = ∂J

∂ρ
X = ∂J

∂P
(3.13)

in terms of the arbitrary function J (P, ρ). The degree of arbitrariness for the generating
function J (P, ρ) is determined by the form of the new variables (P,X) fixed by (3.1), (3.2).
One should distinguish here between two cases. For a given set of positive integers {m,n, r}
assume first we have m+n � r +2. In that case, it is easy to see that we shall obtain the correct
dependence of P and X on the variables (p, ρ) if we define the function J (P, ρ) according to
the formula

J (P, ρ) =
m+n∑

k=r+2

γkP
k
m +

∑
k�0

Jr+1−k(ρ)P
r+1−k

m . (3.14)

Here the fractionary powers are defined in terms of a fixed mth root of P , and the coefficients
γk are arbitrary constants with the restriction γn+m �= 0 for the coefficient of the leading term.
Analogously, for the arbitrary functions Jk(ρ) we impose the condition that the derivative of
the first term is different from zero, J ′

r+1(ρ) �= 0. With these assumptions we shall prove the
existence of the announced canonical variables (3.1), (3.2). Direct substitution of (3.14) in
equations (3.13) gives the equation for P

h(p) =
∑
k�0

J ′
r+1−k(ρ)P

r+1−k
m (3.15)

and also defines the variable X as

X = 1

m

m+n∑
k=r+2

kγkP
k−m
m +

1

m

∑
k�0

(r + 1 − k)Jr+1−k(ρ)P
r+1−m−k

m . (3.16)

In order to write the explicit form of the sought solution P to (3.15) the variable P can be
conveniently represented as follows,

P(p, ρ) = am(ρ)pm eA−(p,ρ)

where A−(p, ρ) is a negative power series in p,

A−(p, ρ) =
∑
k�1

Ak(ρ)p−k .

The coefficients ak(ρ) for the series (3.1) defining P are obtained from the series A−(p, ρ)

which in turn is computed through (3.15) according to the equation

eR− = J ′
r+1a

r+1
m

m e
r+1
m

A− + J ′
ra

r
m
m e

r
m

A−p−1 + · · · .
The Taylor series in the variable ξ = p−1 at ξ = 0 gives for the first coefficients the formulae

am(ρ) = 1

J ′
r+1(ρ)m/r+1

A1(ρ) = m

r + 1

(
c1 − J ′

r (ρ)

J ′
r+1(ρ)r/r+1

)

and so on. By substitution of the known P into the definition (3.16) of X we get the final
formula

X(p, ρ) = n + m

m
γn+m(am(ρ))

n
m e

n
m

A−(p,ρ)pn + · · · .
As we said before, the structure of the canonical transformation varies depending on the

relative values of the integers in the set {m,n, r}. If instead m + n � r + 2, the case we have
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just considered, we would have m + n < r + 2 then we should take for the generating function
J the simpler expression

J (P, ρ) =
∑
k�0

Jr+1−k(ρ)P
r+1−k

m . (3.17)

Then, it readily follows that the method given for computing the variables (P,X) still remains
valid for the new function J, but observe that n = r + 1 − m.

In any case, although J is given by the series (3.14), (3.17) it should be observed that only
a finite number of terms are enough to determine the solution of the dKP equation according
to equations (3.11) and (3.12) in theorem 3.1. A simple counting argument on the number of
terms needed to find the first m + n − 1 coefficients in the series (3.7) for F and G leads to the
following result.

Theorem 3.2. Let {m,n, r} be a set of positive integers and (P,X) be the corresponding
canonical variables (3.1), (3.2) that define the twistor equations (3.10) for the solutions of the
dKP equation. Then, (P,X) can be found through (3.13) in terms of the generating function

J (P, ρ) =
m+n∑

k=r+2

γkP
k
m +

m+n−2∑
k=0

Jr+1−k(ρ)P
r+1−k

m

if m + n � r + 2, while for m + n < r + 2 it is n = r + 1 − m and we have

J (P, ρ) =
m+n−2∑

k=0

Jr+1−k(ρ)P
r+1−k

m .

3.3. Explicit solutions

In this section we shall apply the previous results to the construction of explicit solutions of
the dKP equation(

ut − 3
2uux

)
x

= 3
4uyy

in the simplest cases. To have a glimpse of the meaning of theorems 3.1 and 3.2 we shall
analyse three examples of increasing complexity.

1. When one of the canonical variables (P,X), say P, is of degree m = 1 then the solution
to the dKP hierarchy follows directly from F(L, x)|− = 0 in (3.11) independently of the
concrete form of the generating function J (P, ρ). In this case

F(L, x) = a1

( ρ

r + 1

)
L + a0

( ρ

r + 1

)
+ a−1

( ρ

r + 1

)
L−1 + · · ·

and

ρ = (r + 1)tr+1 + rtrL
−1 + (r − 1)tr−1L

−2 + · · · .
The vanishing of the coefficient of L−1 leads to the equation

1

2

[
2(r − 1)

r + 1
a′

1(tr+1)tr−1 +
( r

r + 1

)2
a′′

1 (tr+1)t
2
r

]

+
r

r + 1
a′

0(tr+1tr ) − a1(tr+1)φ1x = 0.

For the solution u = −2φ1x we find the expression

u = I2tr−1 +

(
r2

2(r2 − 1)
I ′

2 − r2

4(r − 1)2
I 2

2

)
t2
r + I1tr + I0
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where the arbitrary functions Ij (tr+1) are an equivalent parametrization to that of the
functions aj (tr+1) for the solution u.

Higher order coefficients φ2x, φ3x, . . . can be found from the equations corresponding
to higher negative powers of L. In particular, for r = 2 the solution of the dKP equation
results,

u(x, y, t) = I0(t) + I1(t)y + I2(t)x +
(

2
3I ′

2(t) − I2(t)
2) y2.

Observe that this solution is of a very simple nature. In fact, it can be obtained from the
zero solution u = 0 by performing the two symmetries of the dKP equation described in
the previous section.

Consideration of higher values of m and n leads to nice parametrizations for the
solutions of nonlinear ordinary differential equations. The parallelism with the theory of
algebraic curves for the KP equation, as a matter of fact, appears manifestly in the present
construction.

2. It is observed that for values of the set of integers {m,n, r} in theorem 3.2 which are
{2, 3, 2} or {3, 2, 2}, {3, 3, 2}, {2, 4, 2} or {4, 2, 2} the solutions of the dKP equation, as
we shall see below, are of the form

u = I +
√

K

where I and K represent polynomials in x, y with coefficients depending on t ,

I (x, y, t) = I0(t) + I1(t)x + I2(t)y + I3(t)y
2

and

K(x, y, t) = K0(t) + K1(t)x + K2(t)y + K3(t)y
2.

If one introduces this form of solution in the dKP equation one gets the coefficients of
I in terms of the coefficients of K , besides a Riccati equation for the coefficient K3(t),
namely

K ′
3 = 2

K1
K2

3 +
16

15

K ′
1

K1
K3 +

2

15
K ′′

1 − 8

45

(K ′
1)

2

K1
.

A particular solution of this Riccati equation is

K3 = 2
15K ′

1.

Hence, the general solution is easily found to be

K3 = K
8/5
1

C − 2
∫ t

K1(t)3/5 dt
+

2

15
K ′

1.

Finally, the formula for the solution of the dKP equation we were looking for is

u = 1

K2
1

[
−1

2
K2

2 +
2

3
K1K

′
0 − 2

9
K0(3K3 + 2K ′

1)

+
2

9
(K1K

′
1 − 3K1K3)x

+
2

9
(3K1K

′
2 − 2K2(6K3 + K ′

1))y

+
4

3

(
−K2

3 +
1

5
K3K

′
1 − 8

90
(K ′

1)
2 +

2

30
K1K

′′
1

)
y2

]

+
√

K0 + K1x + K2y + K3y2. (3.18)
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This family of solutions lies in the orbit of a simpler solution under the action of the
previously mentioned symmetries of the dKP equation. By these symmetries we can take
K0 = K2 = K3 = 0, so that

2

15
K ′′

1 − 8

45

(K ′
1)

2

K1
= 0

whose solution is

K1(t) = 1

(at + b)3

with a and b arbitrary constants. The corresponding solution of the dKP equation is

u := − 2bx

3(a + bt)
+

√
x

(a + bt)3
.

Observe that this is a solution of the stationary type associated with the dKdV flow not
depending on the variable y.

We now proceed to give the K in some examples

(a) {2, 3, 2} We take in this case the complete form for J and h:
J (P, ρ) = P 2γ4 + P 5/2γ5 + J0(ρ) + P 1/2J1(ρ) + PJ2(ρ) + P 3/2J3(ρ)

h = exp(c1p
−1 + c2p

−2 + c3p
−3 + c4p

−4)p3

and the corresponding K are

K0 = − 4J̇
2/3
3

675γ 2
5

(−60c1γ5J̇ 2J̇
1/3
3 − 9

(
3J 2

3 − 10γ5
(
J1 − c2t J̇

1/3
3

))
J̇

2/3
3

+ 5c2
1γ5t (3J̇ 2 + 4t J̈ 3)

)

K1 = −8J̇
5/3
3

15γ5

K2 = −16J̇
2/3
3

45γ5

(
J̇ 2J̇

1/3
3 − c1

(
J̇ 3 +

2

3
t J̈ 3

))

K3 = −16J̇
2/3
3 J̈ 3

135γ5
.

Observe that c3, c4, γ4, J0 do not appear in the solution.
(b) {3, 3, 2} While the general forms for J and h are

J (P, ρ) = P 4/3γ4 + P 5/3γ5 + P 2γ6

+ J−1(ρ)P−1/3 + J0(ρ) + J1(ρ)P 1/3 + J2(ρ)P 2/3 + J3(ρ)P

h = exp(c1p
−1 + c2p

−2 + c3p
−3 + c4p

−4 + c5p
−5)p3

we again concentrate on the case when c4 = c5 = γ4 = 0 and the corresponding K
are

K0 = 1

45γ5

(
2J̇

2/3
3

(−12c1t J̇ 2J̇
1/3
3 + 18

(
J1J̇

2/3
3 − c2t J̇ 3

)
+ c2

1t (3J̇ 3 + 4t J̈ 3)
))

K1 = 4J̇
5/3
3

5γ5

K2 = 8J̇
2/3
3

5γ5

(
1

3
J̇ 2J̇

1/3
3 − c1

3

(
J̇ 3 +

2

3
t J̈ 3

))

K3 = 8J̇
2/3
3 J̈ 3

45γ5
.

Observe that now c3, c4, J0 do not appear in the solution.
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3. For different values of m,n we get different types of solutions, for example, if we take
m = 5, n = 2 and J (P, ρ) = γP 7/5 + ρ2P 3/5, h = p3, we get the solution

u = 2

2835γ 4t2

(
A

f
+ B + Cf

)

where

A := (21)2/3γ 7(−21 870(2)1/3t22/3 + 14γ (9tx − 8y2)2)

B := 7(9tx − 8y2)γ 4

C := (21)1/3

f := (24 800 580(2)1/3t22/3(2tx + y2)γ 11 + 343γ 12(9tx − 8y2)3 + 5(7)1/2γ 21/2g1/2)1/3

g := 2510 484 768 720 t22 + 2410 616 376(2)2/3γ t44/3(5751t2x2 + 5976 txy2 + 1394y4)

+ 7715 736(2)1/3γ 2t22/3(9tx − 8y2)3(27tx + 11y2) + 343γ 3(9tx − 8y2)6.

The same type is exhibited by the solution corresponding to m = 5, n = 2 and J (P, ρ) =
γP 7/5 + ρP 3/5, h = p3 exp(c/p)

u = 1

315γ 4

(
A

f
+ B + Cf

)

where now

A := (21)2/3γ 7(−14c4γ + 540t)

B := 7c2γ 4

C := −(21)1/3

f := (−343γ 11c6 + 5670γ 11(30x − 20cy + 11c2t) + 5(7)1/2γ 21/2g1/2)1/3

g := 18 895 680t3 + 183 708γ 7(900x2 − 1200cxy + 20c2(33tx + 20y2)

− 440c3ty + 113c4t2) − 15 876c6γ 2(42x − 28cy + 13c2t) + 343c12γ 3.

Cubic-type solutions similar to those just presented here were considered in [20].
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